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Abstract—The processing demands on video analytics calls 
for special design considerations to achieve scalability. Numerous 
factors influence the running time of an analytic job. The time 
consumed for raw computing can be improved by well-
engineered approaches to execute certain sub-tasks. High 
scalability can be achieved by selectively distributing 
computational components. We elucidate such factors that aid 
scalability and present design choices for architecting them. The 
principles outlined in this research were used to implement a 
distributed on-demand video analytics system that was 
prototyped for the use of forensics investigators in law 
enforcement. The system was tested in the wild using video files 
as well as a commercial Video Management System supporting 
more than 100 surveillance cameras as video sources. The 
architectural considerations of this system are presented. Issues 
to be reckoned with in implementing a scalable distributed on-
demand video analytics system are highlighted. The bottlenecks 
and possible solutions are also touched upon. 
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I. INTRODUCTION 

Video Analytics systems has been of tremendous interest in 
various fields due to its utility [1]. A survey of Intelligent 
Video Systems and Analytics [2] highlights the importance of 
such systems in a variety of domains. The richness of 
information in video data is invaluable for surveillance and 
forensics. Without the help of a video analytics system, a 
forensics investigator has to manually sift through large 
amounts of video clips, which is a tedious and error prone 
activity [3]. Video Analytics systems fall into two general 
categories: real-time and on-demand. In real-time systems, the 
analytics is run continuously on the video data feed. For 
example, edge cameras can be designed to run real-time 
analytics [4]. These systems are typically designed for real-
time surveillance [5, 6]. However, many investigative analytics 
are performed on video clips in (recent) history. On-demand 
video analytics systems provide the capability to execute 
analytics on an as and when needed basis on any video source 
for a specific day/time period from the past. The focus of this 
work is on-demand video analytics systems. There are two 
sources of videos available to  an on-demand system. One is 
video files and the other is Video Management Systems 
(VMS’s). Video files are typically stored in mp4 or similar 
formats on disks and directly accessible for video analytics. 

Citizens contributed videos account for a good number of law 
enforcement investigative artifacts and hence the significance 
of video files. VMS’s are mostly commercial systems that 
manage 100’s of edge cameras. For the use of an analytic, the 
video clip for a specific time period has to be accessed 
programmatically through the VMS using an SDK provided by 
the commercial vendor.  

The Video Analytics System targeted in this work is meant 
to support multiple users, multiple video sources and multiple 
analytics. A Video Analytics System can be centralized or 
distributed in nature. A centralized system can perform only 
within the limits of its computing resources. Vertical scaling 
hits the ceiling within the computing power of a single server. 
To go beyond that, horizontal scaling is necessary and hence 
we embrace a distributed architecture. To emphasize the scale 
of the system under consideration, in the rest of the paper, we 
will use the term Video Analytics Platform (VAP) instead of 
Video Analytics System. 

The essential components of the on-demand VAP is shown 
in Fig. 1. The system does not run analytics on the edge 
cameras; instead, all analytics are run inside the platform itself. 

 

Fig. 1. Components of the On-demand Video Analytics Platform 

The working of the VAP in a nutshell is as follows: A user 
logs in, chooses the video sources of interest and runs analytics 
on specific time spans on those video sources. The results are 
stored in the VAP for review and annotations. The user can 
organize the results and review them as necessary.  

II. SCALABILITY FACTORS 

User access controls in VMS systems have to be respected 
by the VAP. Within a VMS, each user is granted permissions 
to a set of cameras. For obvious security reasons, the VAP 



should not by-pass this access control. Consequently, users 
should have single sign-on into VAP using the VMS’s as 
identity providers. The single sign-on is also significant due to 
the fact that the VMS SDK’s require a logged in user ‘session’ 
to fetch video frames for the analytic. If multiple analytics are 
run concurrently, multiple connection sessions have to be 
maintained by the VAP. Consequently, for a highly scalable 
VAP, a ‘session broker’ is needed for the management of 
connection sessions. In our implementation, the ‘session 
broker’ was implemented as a Video Service that ran on a 
dedicated server for scalability. A related scalability factor is 
concurrent video frames pulled from VMS. Table I shows the 
average time for seeking through video frames in 500 
milliseconds intervals on cameras with varying resolutions 
from a VMS. 

TABLE I.  AVERAGE SEEK TIMES OVER 500MILS INTERVAL 

Camera 
Resolution 

Avg. seek time for a frame over concurrent processes 

1 process 2 processes 3 processes 5 processes 

1920x1440 2.32 secs 2.36 secs 2.41 secs 2.46 secs 

1280x960 0.74 secs 0.77 secs 0.79 secs 0.79 secs 

480x360 0.22 secs 0.22 secs 0.22 secs 0.23 secs 

 
When multiple analytics are run concurrently, each analytic 

will need to seek to video frames of interest. Table I shows the 
worst case scenario in continuously seeking through frames 
concurrently via independent processes. In reality, an analytic 
will seek a frame, process it and take necessary action before 
the next frame is fetched. For scalability, there are some 
options. If the VMS SDK is thread-safe, it is possible to run a 
specific analytic pass in its own thread. If not, running each 
analytic pass in a separate process is an option. As can be 
surmised from values in Table I, this option has slight 
performance penalty. Another option for non-thread-safe SDK 
is to cache ahead the next frame sought while the current frame 
is being analyzed.  

The video sources should have permanent unique 
identifiers in a VAP. The top-down hierarchy for video sources 
in the VAP is: VMS → Recorder → Cameras. For the VAP, 
we tagged the VMS level a ‘site’. The recorder level is similar 
to a ‘group’. Each recorder assigns a unique id for a camera 
(which is not necessarily unique across recorders). Capturing 
the essence of this format into a label for each camera is 
necessary for scalability. Also, to maintain consistency with 
this structure, the File collections have to be organized into 
‘sites’ for various file servers, ‘groups’ for folders (or 
directories) and a uniquely generated id as ‘camera id’ for each 
file. This gives a unique string representation for each 
file/camera in the format <site>:<group>:<cameraId>. In our 
VAP implementation, this string format for files were 
generated using ‘site’ as an incrementing positive integer, 
‘group’ and ‘camera id’ as GUID’s [7]. 

VMS’s maintain metadata about the edge cameras. To 
maintain consistency, video files loaded into the VAP should 
capture a minimal set of metadata for each file. In our 
implementation, the following minimal set of information was 
captured for each video file: display name, file format, video 

codec, location of the file, start time of the video and end time 
of the video. From a software developers perspective, to 
accommodate multiple VMS’s and Video Files in a uniform 
manner, a layer of abstraction is needed in the VAP so that 
analytics can make the same API call for fetching frames 
independent of the underlying vendor system. In our 
implementation, the interface was called ‘framegrabber’ and it 
was implemented using ffmpeg [8] for video files and VMS 
SDK calls for VMS. Direct Show Filter supported by most 
VMS vendors is another option. 

III. FACTORS INFLUENCING ANALYTICS PROCESSING TIME 

With advances in high resolution cameras comes the side 
effects of bigger video frames and higher processing delta. As 
can be gathered from Table I, bigger frames of higher 
resolution cameras result in more latency to retrieve frames. If 
downsampling [9] is supported on the VMS side, it is possible 
to request frames at a lower resolution for faster frame 
retrieval. One of the analytics we use in the VAP is video-
summarization [10]. This tool creates video summary views 
with time compression rates up to the 1000’s. For practical 
time calculations, it can be considered a single pass analytic; 
i.e., it can process the frames for the duration of the video clip 
in succession from the beginning in one pass. Using video-
summarization, the time to capture frames from the VMS and 
time for processing the frames in a single thread as relative 
percentages across 3 different cameras (with resolutions as in 
Table I) are shown in Fig. 2. 

 

Fig. 2. Split up of time for an anlytic run 

It is observed from this graph that irrespective of the 
camera resolution, approximately 75-85% of the analytics time 
is spent in capturing video frames. Given the fact that 
concurrent fetching of frames add only little penalty (from 
Table I), a possible solution to reduce run time of an analytic is 
to split the video into multiple clips and run the analytic on 
each clip and converge the results. This requires an 
‘orchestrator’ component to manage the split and merge. Note 
that this may not be an option for certain analytic. In those 
cases where the split-n-mere strategy will work, the individual 
split video clips have to be processed concurrently. To improve 
overall processing time, it will be advantageous to run each 
slice processing on a computing node. Obviously when 
multiple concurrent jobs are scheduled on same node, the 
turnaround time for each job increases. This is another reason 
for having multiple computing nodes. A video analytic job is 
comprised of the algorithm processing part and the results 
processing part (for rendering results). In our implementation 



project, we used the term ‘compute node’ for an algorithm 
processing node and ‘transform node’ for a results processing 
node. For scalability, the architectural design for instrumenting 
compute/transform nodes have to take into consideration 
various factors, which are addressed in the next section.  

IV. COMPUTE/TRANSFORM NODES 

In order to run algorithm processing on compute nodes and 
results processing on transform nodes, an analytic job has to be 
split into two tasks – compute task and transform task. An 
‘orchestrator’ service is required to handle this. The 
Orchestrator assigns job-id’s and task-id’s. Also, packaging the 
parameters for the tasks is handled by Orchestrator. The 
parameters for an analytics task have to be passed to a 
compute/transform node in a node-independent way. In our 
implementation, we used JSON [11] for encoding and passing 
parameters. Since JSON is a cross-platform data exchange 
format, this has the added benefit that parameters for analytics 
can be passed on to multiple operating systems of choice 
(windows or Linux) in a uniform fashion. This helps in running 
analytics on multiple OS’s. A sample JSON payload for a 
compute task from our implementation is given below: 

{"Job-Id":"c620b2ac-a208-415c-99a1-cb978a0fa3bc", 
"Task": { 
    "Id": "2c7fa763ce2a44448130e82662a15fea", 
    "Analytics": "Summarization", 
    "Arguments": { 
      "VideoSources": [ 
          {"Id":"4d13763d1607:3e1a7a2e:141", 
           "DisplayName": "Bldg. C6 - West" 
          }], 
      "BeginTime": "2016-10-26T10:00:00", 
      "EndTime": "2016-10-26T10:30:00", 
      "UserProfile": { 
            "Name": “user1", 
            "VAPHandle": "d4f5d22d-70f0-4381-9830-cf4d5" 

} } } } 

The Orchestrator has to pass these parameter constructs to 
the compute/transform run time. In order to make that happen, 
a small footprint agent runs as a proxy for the 
compute/transform runtime and when the parameters are 
received, the agent bootstraps the runtime. There are 2 options 
for this. One is a pull model and the other is a push model. In 
the pull model, the parties poll for information. In the push 
model, the parties are handed over the requisite information. 

 

Fig. 3. Pull models for task distribution 

As depicted in Fig. 3., the Orchestrator puts the task 
parameters (in JSON format) in a Task pool. The agents poll 
the Task pool periodically to check for new tasks coming into 
the pool. A new task is executed by the first agent who picks it 
from the pool. The pull model can be implemented in two 
ways. In the first method, there is only one task pool shared 
between compute tasks and transform tasks. Any task can be 
picked up by an agent. The task can be a compute task or a 
transform task. Every node can execute a compute task or a 
transform task. In the other model, there are two pools of tasks: 
one for compute tasks & the other for transform tasks. The 
agent can listen on either one of the task pools. If it listens on 
the compute (transform) task pool, it makes that node a 
compute (transform) node. Essentially, this self-subscription 
splits the nodes into two groups of compute and transform 
nodes. The Orchestrator has to be aware of the types of pools 
and put the task in the right pool. We tried both models and 
chose the multi-queue pull model by dedicating a certain 
number of compute nodes and a fixed number of transform 
nodes. This was primarily because the transform nodes didn’t 
need as much resources as the compute nodes. In our 
implementation, we used RabbitMQ for the task pool; with one 
message queue for compute tasks and another message queue 
for transform tasks. The pull model is very flexible and 
scalable. Any new node can be added to listen on the task pool 
and any idle node can be removed with no loss of operation. 

In the push model (see Fig. 4), a master task scheduler 
assigns each task to an agent. The master task scheduler 
maintains a resource pool of compute nodes and transform 
nodes. The Orchestrator hands over tasks to the master task 
scheduler.  

 

Fig. 4. Push model for task distribution 

The Orchestrator has to instruct the master task scheduler 
which resource pool to use for a given task. The master task 
scheduler maintains resource pools of nodes that are registered 
as compute nodes or transform nodes. In this model, a new 
node has to be registered with a resource pool. Removing a 
node from the resource pool also means de-listing with the 
master task scheduler. Note that it is also possible to use a 
single resource pool and have all nodes run either compute or 
transform tasks similar to the single-queue pull model. We 
used htcondor [12] job scheduler for evaluation of the push 
model.  

Both pull and push models provide computing scalability. 
However, the pull model is quite simple. The push model is 
based on job schedulers from High Performance Computing 



domain. These job schedulers have rich set of task 
management capabilities. Due to the simplicity of the pull 
model, in our VAP deployment in the wild, we used the pull 
model. In our pull model, we also provided a mechanism for a 
failed task to be put back into the Task pool for a second retry. 
If the task fails on second attempt also, the job is discarded. 

In order for the compute nodes and transform nodes to 
exchange data seamlessly, it is necessary to have shared 
storage. A simple implementation strategy is to use NAS 
(Network Attached Storage) and map a common share between 
windows and Linux nodes. Another implementation detail is 
that the algorithm processing part of an analytics must run to 
completion and save the results even if the user logs out of the 
VAP or user session times out. 

V. IMPLEMENTATION SPECIFICS 

The implementation of our VAP was called SIGMA 
(Scalable Integration of Geo-tagged Monitoring Assets). The 
various components of the SIGMA environment are shown in 
Fig. 5. 

 

Fig. 5. Architecture of the implemented SIGMA platform 

The frontend server hosted a web server (nginx) and the 
SSO server (OpenAM). The OpenAM layer was used as a 
gateway between SIGMA and the VMS for user 
authentication. The backend server hosted the amqp message 
queue service (RabbitMQ) and mongoDB database. A video 
server maintained the session broker for user connections to 
VMS’s. The Video server also had the interface for fetching 
frames from video sources. Metadata for video files as well as 
analytics results were stored in mongoDB. The compute nodes 
and transform nodes had agents with small footprint running on 
them polling the RabbitMQ for tasks to be executed. Two 
queues were maintained on RabbitMQ – one for compute 
agents and one for transform agents. Each user could create 
workspaces to store the analytic results. Workspaces could be 
shared between users. The shared storage was made available 
to windows nodes as \\sigmafs\data CIFS share and to Linux 
nodes as /sigmafs/data NFS mount point.  

VI. CONCLUSION 

The scalability of an on-demand video analytics platform 
that supports multiple users, multiple analytics and multiple 
video sources depends on various factors that influence 

different components of the VAP. We discussed those factors 
and the corresponding architectural design choices. The 
implementation details of an on-demand Video Analytics 
Platform implemented using these principles was outlined. 
This platform was distributed in nature and comprised of 
multiple service nodes including compute nodes and transform 
nodes that handled different processing needs of video 
analytics. The utility of the platform was demonstrated by its 
deployment in the wild for law enforcement investigators using 
video files and commercial VMS with more than 100 video 
cameras attached. We also delved into mechanisms to improve 
analytics turnaround. Areas of possible bottlenecks and 
methods to overcome them were also discussed. 
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